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Abstract
The early detection ofmetastatic cells can lead to better prognosis and higher survival rate. These cells
have the capacity to travel through the circulatory system and invade other tissues. Often the
symptoms formetastasis are not evident until cancer incapacitates a secondary organ.Hence, early
detection is crucial. An imaging-based approachwith a contour detection technique is presented here
to distinguishmetastatic breast cancer cells frombenign cells when captured on anti-EGFR aptamer
modified glass substrates.Metastatic (MDA-MDB-231) and non-metastatic (MCF-7) breast cancer
cells were studied. The temporal tracking of cells showed thatmetastatic cells depicted prominent
morphological changes, whereas the benign cells did not show such behavior. Themetastatic cells
showed rapid changes in their shapes by protruding/retracting cellmembranes. The images of each
type of cells captured on functionalized substrates were analyzed, andmorphology changes were
quantifiedwith similarity and distance analysis. Low similarity coefficients and high distance values
meant largermorphology changes. Themetastatic cells showed lower similarity coefficients and
higher distancemetric values (averageHausdorff distance=2.8 a.u.; averageMahalanobis
distance=0.7 a.u.) than non-metastatic cells (averageHausdorff distance=1.5 a.u.; average
Mahalanobis distance=0.31 a.u.). These parameters were successfully used to detect 52%of
metastatic cells from a cellmixture that imitated breast tissue. This approach can be used for detecting
metastatic potential of a given sample towards precise therapy for a patient.

1. Introduction

Detecting metastatic breast cancer at an early stage is
of great importance for prescribing specific treatments
to curtail the spread of the disease. Metastatic cancer
can spread beyond the originating organ. For breast
cancer, metastasis can reach bone, liver, lungs, and
even brain. According to American Cancer Society, in
2016 among the new breast cancer cases 249 000 cases
were diagnosed as metastatic, while only 61 000 were

in situ. The death toll was 40 890 [1]. Only 6%–10% of
reported breast cancer cases are diagnosed initially as
metastatic [2], but eventually 20%–30%of all reported
breast cancer cases become advanced ormetastatic [3].
Breast cancer death rates among women are higher
than those for any other cancer, besides lung cancer
[1]. Early detection of metastatic breast cancer can
dramatically improve the diagnosis and treatment,
which in turn can reduce the possibility of occurrence
of advanced cancer and improve life expectancy.
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Computed x-ray tomography, magnetic reso-
nance imaging, mammogram, and ultrasound scans
are the current diagnostic tools to clinically detect
metastasis. The ability of these tools hugely depends
on the size and density of the tissue. Mammogram is
less likely to find tumors in women younger than 50
years and less than one percent of standard mammo-
grams can lead to cancer diagnosis [1]. Even though
these tools can detect tumors in many patients, they
are quite unreliable to detect metastasis as these can-
not image metastatic cells traveling inside the body
unless the cells form distant micrometastases. At that
point, the disease is already at the last stage. Research-
ers are investigating new imaging tools like positron
emission tomography (PET) to acquire molecular and
physiological information [4, 5]. The FDA has
approved PET imaging to specify the stage of breast
cancer [6]. A group has reported macrophages target-
ing magnetic nanoparticles to detect millimeter-sized
lymph node metastases in patients [7]. Another group
has investigated radiolabeled monoclonal antibodies
to target tumor-specific antigens such as HER2 and
carcino-embryonic antigen to image cancer [8]. One
of the negative sides of these techniques is that these
require imaging agents or radiotracers which are often
restricted if the patient is on another medication, has
an illness, or medical conditions like pregnancy or
allergies. Sometimes the slow clearance of tracers from
the blood causes further complications. Hence, most
of these are not FDA approved. As a result, if there is
any confusion about a lump, a biopsy is prescribed.
Biopsy is followed by histological examination of sur-
gically removed breast tissue. Cancer stage is deter-
mined by the arrangement of cells, shape and size of
cells, cell nucleus color when stained, histochemical
staining of cancer cells, and immunohistochemical
staining of cancer cells with antibodies. At the early
stages of metastasis, the cancer cells are very few in the
tissue, and histological examination after biopsy is
again not very effective. About 10% of patients who
have a mammogram require further testing. And less
than 20% of those require a biopsy, and about 50% of
those do not have cancer [1]. To effectively detect
metastatic breast cancer, we report a simple post-
biopsy imaging technique using aptamer-functiona-
lized substrates. This is a label-free, single cell analysis
approach where each and every cell can be examined
for metastatic behavior. Examination of each and
every cell provides high probability of detecting meta-
static cells even though the number of these cells may
be very small in the sample.

The most frequently overexpressed receptor tyr-
osine kinase oncogene is epidermal growth factor
receptor (EGFR)which promotes cell migration, inva-
sion, proliferation, adhesion, angiogenesis etc [9–13].
It is present on the cell membrane and is activated
when it binds with growth factors. In healthy cells,
EGFR expression levels vary from 40 000 to 100 000
proteins per cell [14]. The expression increases as the

cells start to become cancerous. The constant activa-
tion of this upregulated receptor leads to uncontrolled
cell division, which in time turns out to be cancer.
Both wild type (WT) and mutated EGFR have been
reported to be biomarkers for cancer. Overexpression
of WT EGFR is reported to be found in lung cancer
and glioblastoma cells, while a mutated variant EGFR-
vIII has also been reported to be present in gliocarci-
noma [15]. In non-metastatic breast cancer cell line
MCF-7, EGFR expression is 1.5×104 receptors per
cell, whereas in metastatic breast cancer cell line
MDA-MDB-231, the expression increases to 1.3×
105 receptors per cell [16].

In this work, the capture and detection of meta-
static breast cancer cells MDA-MDB-231 is reported
based on their uniquemorphological characteristic on
anti-EGFR aptamer-immobilized glass substrates.
Metastatic breast cancer cells changed their morph-
ology with time when captured on anti-EGFR apta-
mer-functionalized glass substrates. Non-metastatic
MCF-7 cells captured on aptamer-modified substrates
did not show this behavior. Based on this distinguish-
able trait of metastatic and non-metastatic cells on
functionalized glass substrates, we established a detec-
tion technique. We used distance matrix analysis to
compute shape change of cells from the optical ima-
ges. This was tested on a cell mixture of metastatic and
non-metastatic cells mimicking a biopsy sample. In
biopsy, we extract different types of cells including
metastatic ones. It is hard to detect metastatic cells
from non-metastatic cells using current technologies.
The technique presented here can successfully detect
metastatic cells from a mixture based on their mor-
phological alterations on aptamer-grafted substrates.

We have reported efficient capture of human glio-
blastoma cells and their distinction from astrocytes on
aptamer grafted substrates previously [17, 18]. Cell
capture technique is very popular for its selectivity,
and the efficiency of our reported technique for glio-
blastoma cell capture was higher than astrocytes. But
in the captured cell population, distinction of cells was
not possible. We later showed that there was morpho-
logical non-uniformity between glioblastoma and
astrocyte cells on aptamer modified substrates [18].
Here, we show a precise distance matrix based cell
shape analysis to differentiate between metastatic
and non-metastatic breast cancer cells on aptamer-
modified substrates.

2.Materials andmethods

All chemicals used in the experiments were obtained
from Sigma-Aldrich (St. Louis, Missouri, USA), unless
mentioned otherwise.

2.1. Substrate preparation
Fisher brand microscope slides were used as sub-
strates. The glass slides were cut into 5 mm×5 mm
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pieces and cleaned with Piranha solution
(H2SO4:H2O2::3:1) for 10 min to remove any contami-
nant and create –OH groups. The substrates were
subsequently washed with deionized (DI) water and
dried inN2flow. To remove anymoisture, a baking step
at 195 °C for 10min was done. To create amine groups
on the surface, the substrates were immersed in 200 μl
of 2% (3-Aminopropyl)triethoxysilane (APTES) for
30 min. After thorough rinses with isopropyl alcohol
(IPA) and DI water, the substrates were dehydrated
again at 150 °C for 30min. A solution of 9ml dimethyl
sulfoxide (DMSO), 1 ml pyridine and 0.002 gm
p-Phenylene diisothiocyanate (PDITC)was prepared to
immerse the substrates for 5 h at 45 °C. After more
washing with IPA and diethylpyrocarbonate (DEPC)-
treated water, unreacted PDITC end groups were
capped to prevent any nonspecific adsorption. To do
that, the substrates were immersed in 150mmol l−1 N,
N-Diisopropylethylamine (DIPEA) in dimethylforma-
mide (DMF) and 50mmol/l 6-amino-1-hexanol for
5 h. PDITC created a diisothiocyanate layer on the
substrates, one end of which attached to the glass
substrate-tethered APTES and the other end could
bind to amine-bearing capture molecules. We used
amine-modified DNA as capture molecules. The
amine-modified capture DNA had the sequence:
5′-amine-CTGGTCATGGCGGGCATTTAATTC-3′ and
was diluted with DMSO [17]. Each of the glass substrates
was loaded with 20μl of 5μM capture DNA, and was
incubated for 18 h at 45 °C in a humid chamber. This
capture DNA would later bind with the aptamers. The
aptamerswould thenbind to tumor cells.

2.2. Aptamer preparation and substrate
functionalization
The sequence for anti-EGFR aptamer was: 5′-GGC
GCU CCG ACC UUA GUC UCU GUG CCG CUA
UAA UGC ACG GAU UUA AUC GCC GUA GAA
AAG CAU GUC AAA GCC GGA ACC GUG UAG
CAC AGC AGA GAA UUA AAU GCC CGC CAU
GAC CAG-3′ [17]. The underlined part is the com-
plementary chain which could bind with the capture
DNA. As a negative control, to show lack of non-
specific binding, a mutant aptamer sequence was used
(5′-GGCGCUCCGACCUUAGUCUCUGUUCCC
ACA UCA UGC ACA AGG ACA AUU CUG UGC
AUC CAA GGA GGA GUU CUC GGA ACC GUG
UAG CAC AGC AGA GAA UUA AAU GCC CGC
CAU GAC CAG-3′) [17]. The anti-EGFR and mutant
aptamers were diluted with DEPC-treated water and
mixed with hybridization buffer (5:1::RNA:hybridiza-
tion buffer). After 18 h incubation, theDNA incubated
substrates were washed with IPA and DEPC water. A
volume of 25 μl aptamer was placed on each substrate.
Half the substrates were incubated with anti-EGFR
aptamer, while the other half were incubated with
mutant aptamer. All the substrates were incubated at
37 °C for 1 h in an incubation chamber. The chamber

was previously washed with RNase-free and DEPC
treated DI water. After incubation, substrates were
washed with 1× phosphate buffered saline (PBS)
solution (at pH7.5) and used immediately.

2.3. Target cells
Two types of breast cancer cells were used. The
metastatic cell line was MDA-MDB-231 and the non-
metastatic cell line was MCF-7. They were obtained
from the University of Texas Southwestern Medical
Center (Dallas, TX). The cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM/F-12;
Cellgro, Corning, Manassas, Virginia, USA) with 10%
heat-inactivated fetal bovine serum. L-glutamine
(Invitrogen, Carlsbad, California, USA) andGentamy-
cin were also added to the medium. A sterile humidi-
fied culture environment wasmaintainedwith 95%air
and 5%CO2 at 37 °C. In all experiments, the cells were
first centrifuged to remove supernatants and then
diluted with sterilized andwarm 1× PBS solution. The
prepared cells were immediately used.

2.4. Cellmixture preparation
Two sets of experiments were conducted with meta-
static and non-metastatic cells. In the first set of
experiments, both types of cells were captured on anti-
EGFR aptamer and mutant aptamer modified sub-
strates separately. Cells were observed, and images
were taken. The distinctive morphological character-
istics of metastatic and non-metastatic cells were
established and quantified from this experiment.

In the second set of experiments, mixtures ofmeta-
static and non-metastatic cells were used. The meta-
static cells were tagged with 5-chloromethylfluorescein
diacetate (CMFDA; ThermoFisher Scientific, Carlsbad,
California, USA). This fluorescent dye was used for
tracking cell motility. The emission spectra were 492/
517 nm. The CMFDA (0.2 μl)was mixed in 1ml of the
medium. The tagged metastatic and untagged non-
metastatic cells were mixed in 1:1 ratio. The purpose of
this experimentwas to trackmorphology changes of the
cells temporally, and detect metastatic cells from the
mixture based on previously established quantitative
metrics.

2.5. Cell suspension and image capture
In the first set of experiments, the prepared cells were
suspended in 1×PBS solution. Thesewere then loaded
on the 5 mm×5 mm functionalized glass substrates.
Typically, a volume of 30 μl cell suspension was used
to cover each substrate. The concentration of non-
metastatic cell suspension was 200 000 cells ml−1,
while that for metastatic cell suspension was
100 000 cells ml−1. Usually, 3 or 4 min were given to
let the cells settle down on the functionalized sub-
strates. After settling down, the average concen-
tration of cells on functionalized glass substrates was
∼240 cells per mm2 for non-metastatic cells and ∼120
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cells per mm2 for metastatic cells. To inspect cell
attachment on the substrates and their behavior over
the time, an optical microscope was used. Three
samples from each of the four groups of cell-aptamer
pairs were analyzed: metastatic cells captured on anti-
EGFR aptamer-functionalized substrates, metastatic
cells captured onmutant aptamer-functionalized sub-
strates, non-metastatic cells captured on anti-EGFR
aptamer functionalized substrates, andnon-metastatic
cells captured onmutant aptamer-functionalized sub-
strates. The cells on all 12 substrates were imaged.
Over the period of 30 min, images were taken 30 s
apart using a Leica DM series optical microscope with
DFC295 camera at 20×magnification.

In the second set of experiments, CMFDA tagged
metastatic and untagged non-metastatic cell pellets
were suspended in 1× PBS solution at 1:1 ratio.
The anti-EGFR aptamer-modified substrates were
covered with this cell suspension. The cells were then
imaged with Zeiss fluorescence microscope (Axioplan
2 LSM)with AxioCamMR3 camera.

2.6. Image analysis
The captured images were analyzed with custom
written code in MATLAB. From the images, each cell
was cropped and arranged sequentially with respect to
time. A batch of images was generated for each cell
showing its shape change with time. These images
were in RGB format. They were processed using edge
detector code which generated batches of binary
images. All the binary images were processed in a way
that the center of the cell was always at the same
position. This precaution was taken due to the fact
that, some cells moved a little over time while still
attached to the surface. Each of these batches of binary
images was processed using custom software to
quantify their shape change.

2.7. Computationalmethods
2.7.1. Cell contour detection
The computational approach for cellular edge detec-
tion was based on level set algorithm. The RGB images
were processed with Wiener filter for noise removal.
Wiener filter is a low-pass filter which removes noise
by adapting to pixel wise statistical estimation of the
local neighborhood. The Wiener filter had neighbor-
hoods of size 4×4 pixels to estimate the local mean
and standard deviation. Gaussian white noise was
assumed to be the noise parameter. The adaptive
nature ofWiener filter worked better than linear filters
due to its capability to preserve edges. The images were
further smoothed by Gaussian filter. The Gaussian
filter had the size of 25×25 pixels with positive
standard deviation of 1.5. The edge of a cell was the
place of rapid change in the intensity profile of the
image. Therefore, the cellular edge corresponded to
the extremas of the derivatives of image intensity.
Gradients of the images were calculated which

indicated the places with most rapid intensity change
i.e. the cellular edge. The gradient function of
MATLAB 2013was used to calculate the 2D numerical
gradient of image metric. The strength of the edge was
calculated by the magnitude of the gradient. From this
magnitude, an edge indicator function was calculated
using the following formula:

=

+

Edge indicator function
1

1 Magnitude of gradient2

Level set methods are used for the implementation
of interface evolution under various forces. It is a
dynamic process which tracks the motion of an inter-
face [19]. The interface is called zero level set, and in
our case, it was the image boundary. When the image
boundary (zero level set) started to move inwards and
towards the cellular edge, we got an initial value for the
partial differential equation. The evolution forces
caused themovement of the interface. The partial diff-
erential equationwith evolution forces is:

d
d

+  = 
f

t
S f K f. . ,

where 

S f. is external vector


S based normal force

on interface f. The right-hand side ( K f. ) is curvature
value K based force on the interface f.

In solving this equation, Neumann boundary con-
dition was used. Neumann boundary consisted of the
derivatives of the image intensity. The curvature-based
force curved the interface, when the vector-based force
pulled the interface towards the cell boundary. The edge
indicator function stopped the interface around cell
boundary. Therefore, the tracked boundary from the
evolution forces was compared with the edge indicator
function over and over until matched. In this way, we
segmented the cells from non-cell background by
detecting the cell contour.

2.7.2. Shape similarity calculations
The segmented cells were converted to binary, where
the cell body was black and the background was white.
To quantify the cell shape change, we employed a
shape similarity matching technique. The cells were
tracked over time with an optical microscope, and
images were taken for 30 min. These images were
converted to binary formats by contour detection. The
binary data was matched from image to image. The
binary data had a ‘1’ value where cell body was present
and a ‘0’ value meant absence of cell body. A 2×2
contingency table was generated for each pixel to
match two consecutive images. The four conditions
that dictated the table were: presence of cell body in
both images, ‘a’; presence of cell body in first image
and absence in second image, ‘b’; absence of cell body
in first image and presence in second image, ‘c’; and
absence of cell body in both images, ‘d’. For a pixel,
only 1 of the 4 conditions had to be true. A value of ‘1’
was assigned for the true condition and ‘0’ for false. A
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similarity coefficient, Sokal–Sneath coefficient [20],
was calculated from this table. The mathematical
formula is:

=
+ +

–
( )
a

a b c
Sokal Sneath Coefficient

2
.

Mutually absent attribute or ‘d’ was not necessary
for similarity calculation, according to Sokal–Sneath
[20]. When two binary shapes were similar, ‘a’ was
very large; as well as the similarity coefficients. If a cell
did not change shape significantly, it remained similar
to its previous form, and would generate a high simi-
larity coefficient. Continuous morphological change
of a cell thus depicted lower values of Sokal–Sneath
coefficients.

2.7.3. Distancematrix calculation
Distance metric analysis is a rigorous method for
comparing cell shape. It is a statistical method of
pattern recognition, where each pattern is described in
terms of features. In our case, we calculated two
features: Hausdorff distance and Mahalanobis dis-
tance. Features were computed in a way that for
different patterns there were non-overlapping feature
spaces. We calculated and established Hausdorff
distance profile and Mahalanobis distance profile for
metastatic and non-metastatic cells. These distance
profiles clustered in clearly recognizable manners to
distinguish metastatic and non-metastatic cells based
on a decision boundary.

The first distance matrix, the Hausdorff distance,
calculated the resemblance between cell contours in
two consecutive images [21]. If A and B are the sets of
points on the cell contour in two consecutive images,
the distance is:

=( ) ( ( ) ( ))H A B h A B h B A, max , , , ,

where,  = -( ) ∣ ∣h A B a b, max min .a A b B

The Hausdorff distance minimizes positional
errors with nominal and fast calculations. The dis-
tance between two closed sets is zero, if and only if
both sets are identical. That means, if the cells are not
showing any morphological changes, the Hausdorff
distance will be ideally zero or practically a small num-
ber. If a cell is changing shape, distance will be a large
number.

Another distance matrix, the Mahalanobis dis-
tance, measured the numbers of standard deviations
the cell periphery was away from mean cell boundary
[22]. It is calculated from the formula:

= - --( ) ( )D x m C x m ,T2 1

where, D=Mahalanobis distance, m= vector of
mean values from initial cell boundary, x= vector of
changing cell boundary, C−1= inverse covariance
matrix of initial cell boundary, and T= transpose
vector.

The points on a cell boundary were taken as vec-
tors which were members of a 2D space representative
of an image. When calculating Mahalanobis distance

between two consecutive shapes, the earlier shape was
assumed to be 2D Gaussian distribution and the later
shape had the changing cell boundary with these 2D
vectors. The Gaussian distribution would resemble an
ellipsoid centered at its mean; just like a cell with an
ellipsoid shape with a center of mass. When the cell
was changing shape, some vectors on the cell bound-
ary were moving. Mahalanobis distance gave us the
‘extremeness’ of those vectors with respect to the
Gaussian shaped initial cell body. The ‘extremeness’
was the distance value indicating the shape change
between two consecutive images.

3. Results and discussion

3.1.Dynamic tracking ofmorphological
characteristics of cells
The metastatic and non-metastatic cells were captured
separately on anti-EGFR aptamer and mutant aptamer-
modified substrates. The captured cells were tracked
for 30 min. Over this time, the metastatic cells
changed their shapes on anti-EGFR aptamer-
modified substrates by creating protrusions form cell
membrane. The non-metastatic cells captured on
anti-EGFR aptamer-functionalized substrates did
not show such changes in shapes. Both types of
cells captured on mutant aptamer-functionalized
substrates did not show any morphological changes.
It was unique for metastatic breast cancer cells
captured with anti-EGFR aptamer to show distinc-
tive morphological behaviors. This feature was used
to identify metastatic breast cancer cells from non-
metastatic ones.

Metastatic and non-metastatic cells captured with
mutant aptamer showed the same behavior (no shape
change) as non-metastatic cells captured with anti-
EGFR aptamer. For simplicity in presentation, results
from cell morphology on mutant aptamer-functiona-
lized glass substrates are not shown in the data analy-
sis. Results for non-metastatic cells captured with
anti-EGFR aptamer are good representations of
metastatic and non-metastatic cells captured on
mutant aptamer-functionalized glass substrates.

The temporal opticalmicrographs in figure 1 show
the morphological changes of cells over time. The
metastatic breast cancer cells showed morphological
changes when captured with anti-EGFR aptamer
(figure 1(a)). Micrographs of six representative meta-
static cells are shown. Non-metastatic cells captured
on anti-EGFR aptamer or mutant aptamer substrates,
and metastatic cells captured on mutant aptamer sub-
strates did not show such behavior (figure 1(b)).

The morphological changes of metastatic cells on
anti-EGFR aptamer-modified substrates can be
explained by the expression of EGFR on cell mem-
brane. Metastatic breast cancer cells have 10 times
more EGFR than their non-metastatic counterparts
[16]. EGFR detects specific signals for cell movement,
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proliferation and migration [23, 24]. Metastatic breast
cancer cells, having higher density of EGFR, created
more receptor-aptamer bonds than non-metastatic
cells. In these cells, more activated EGFRs generated
cascades of intracellular signals. It is known that intra-
cellular signaling stimulated by EGFR results in con-
tinuous restructuring of actin filaments [25].
Overexpression of EGFR thus triggered dynamic rear-
rangement of cytoskeleton structure ofmetastatic cells
on anti-EGFR aptamer-functionalized substrates.

3.2. Shape similaritymatching
In figure 2(a), average Sokal–Sneath coefficient values
are plotted for metastatic and non-metastatic cells
with respect to time. It is a similarity coefficient, and

lower value of the coefficients means cell shape is
changing prominently with time. Average coefficient
value for non-metastatic cells was more than 0.9 a.u.
during the 30 min period, confirming a high similar-
ity. For metastatic cells, the average coefficient value
wasmuch lower for the first 10 min. Later, it increased
but still stayed below 0.9 a.u. The propensity of
changing morphology for metastatic cells was
observed to gradually decrease with time. It can be
inferred that after around 20 min, the cytoskeleton
rearrangement of metastatic cells was finally stable. In
figure 2(b), the comparison is shown for two time
points. The non-metastatic cells have same aver-
age coefficient values (∼0.9 a.u.) at 4 and 28 min. The
average coefficient values for metastatic cells, on the

Figure 1. (a)Metastatic cells capturedwith anti-EGFR aptamer.Micrographs offive different cells after (I) 2 min, (II) 9 min, and (III)
17 min of capture. Each cell shows change in contour over time; (b) (A)non-metastatic cells captured on anti-EGFR aptamer
substrate, (B)non-metastatic cells onmutant aptamer substrate, (C) ametastatic cell captured onmutant aptamer substrate.
Micrographs taken after (I) 2 min, (II) 9 min, and (III) 17 min of capture. Non-metastatic cells do not show anymorphological change
over time.
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other hand, changed from 0.77 to 0.84 a.u. for these
two time points. The average coefficient values for
metastatic cells are significantly different than those
for the non-metastatic cells at both time points (*p-
value<0.01). For better diagnostics, the contrast
between metastatic and non-metastatic cells is prefer-
able to be strong. The early coefficient values are thus
better for error-free diagnosis.

Lower similarity is clear depiction of more change
in the morphology of metastatic cells on anti-EGFR
aptamer-functionalized substrates. This confirmed the
fact that the cytoskeleton structure of these cells was
more flexible than non-invasive cancer cells [26–28].
The actin filaments of the cytoskeleton have been
reported to be very agile inmetastatic cells [29, 30].

Over the imaging period, it was observed that the
cells did spread out on the substrates. Hence, their size
changed in the 2D images. For coefficient analysis,
where we took every pixel change into account, this
phenomenon had an undesirable influence. This
decreased the sensitivity of this metric. We calculated
distance matrices to avoid this problem. Distance
matrix analysis was done only on cell contours.
Though cell contours also changed due to spreading
out, the change was subtler than the cell area change.
Although coefficient analysis was burdened with cell

spreading phenomenon, it still presented a quick and
simpler measure to quantify dynamic morphology of
metastatic cells.

3.3.Distancemetric analysis for cell shape
comparison
3.3.1. Hausdorff distance profile for metastatic and non-
metastatic cells
In figure 3(a), the average Hausdorff distance for
metastatic and non-metastatic cells are shown with
time. Higher Hausdorff distance means higher cell
shape change. The non-metastatic cells showed a less
and uniform distance over 30 min. Due to constant
morphological changes of metastatic cells, their dis-
tance values were higher. From this analysis, it was
again evident that the shape changing tendency of
metastatic cells subsided after around 20 min. When
activated EGFR on cell membrane triggered intracel-
lular signaling pathways, actin-modifying proteins
were released from the cell membrane, which reorga-
nized actin cytoskeleton [31]. Filopodia/lamellipodia
extension and retraction from cell membrane was
controlled by actin cytoskeleton. Presence or absence
of suitable binding sites on the substrates stabilized the
extension or retraction of filopodia/lamillipodia
[32, 33]. Stable binding between surface-bound anti-

Figure 2. (a)Average Sokal–Sneath coefficient values formetastatic andnonmetastatic cells over 30 min. The trend showsmetastatic
cells have lower coefficient value, whichmeans cell shape is changing vigorously. Non-metastatic cells are uniformly showing higher
similarity with coefficient values closer to 1, where 1means exactly same shape. (b)Comparison between Sokal–Sneath coefficient
values formetastatic and non-metastatic cells at two time points (*p-value<0.01).
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EGFR aptamer and cell membrane EGFR ultimately
suppressed cell morphological change after 20 min.
The total distance value after 30 min consisted of
the high-contrast early values and low-contrast late
values. We could only take the high-contrast early
values for discrimination, but from our results, we
concluded that inclusion of the low-contrast late
values augmented the metric, and enhanced the
difference between metastatic and non-metastatic
cells. Average Hausdorff distance after 30 min is
plotted for both types of cells in figure 3(b). The
average was 1.5 a.u. (SD= 0.4 a.u.) for non-metastatic
cells and 2.8 a.u. (SD= 0.7 a.u.) for metastatic cells.
Two-tailed t-test confirmed that the averages were
statistically significant (p-value<0.05).

Metastatic cells have the unique ability to move
into tissues surrounding the primary cancer sites. This
aberrant behavior is caused by genetic mutations. One
such mutation happens in the EGFR family of genes
[34]. Genetic alteration of EGFR gene is reported to
result in upregulation of EGFR on cell membrane of
metastatic cells [35]. We employed this fact to capture
metastatic cells with anti-EGFR aptamers. Upregu-
lated growth factor driven signaling boosted cell moti-
lity inmetastatic cells.

3.3.2. Mahalanobis distance profile for metastatic and
non-metastatic cells
Larger Mahalanobis distance value means larger
change in the cell boundary. In figure 4(a), this
distance is plotted with respect to time. Themetastatic
cells showed higher dissimilarity than non-metastatic
ones. The non-metastatic cells showed a more uni-
form trend thanmetastatic cells. AverageMahalanobis
distance after 30 min is shown in figure 4(b). The
averages are 0.7 a.u. (SD=0.27 a.u.) and 0.31 a.u.
(SD=0.08 a.u.) for metastatic and non-metastatic
cells, respectively. Two-tailed t-test showed that the
distance values for metastatic cells were significantly
different from that of non-metastatic cells (p-
value<0.05).

Hausdorff distance analysis is very precise and
includes very small positional change of cell contour in
calculations. Cells are alive entities, and it is usual for
any cell to show small shape change over time. As a
result, Hausdorff distance analysis is sometimes over-
loaded, and the detection contrast between metastatic
and non-metastatic cells decreases. On the other hand,
Mahalanobis distance analysis is based on mean
boundary of cell, and its covariance matrix with new
boundary. Hence, Mahalanobis distance sometimes

Figure 3. (a)AverageHausdorff distance ofmetastatic and non-metastatic cells with respect to time; (b) average of total Hausdorff
distance of both type of cells after 30 min. Two-tailed t-test showed *p-value<0.05.
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misses subtle change in shape that is expected to be
taken into account and over-amplifies the contrast
betweenmetastatic and non-metastatic cells.We com-
bined these two features to counterbalance the impre-
cise calculations and came up with combined distance
profiles formetastatic and non-metastatic cells.

We observed that similarity coefficients took cell
area into account. Even a very small change of cell
shape was amplified in the calculated similarity coeffi-
cients and produced huge variability in average values.
Whereas, distance matrices circumvented the cell
spreading effect to some extent. Both type of calcula-
tions can thus give us insights into the cell activity
over time.

3.4.Detection of cells from cellmixture based on
distance profile
From distance matrix analysis, we could successfully
differentiatemetastatic cells from non-metastatic ones
from their morphological behavior on anti-EGFR
aptamer-modified substrates. For the purpose of
clinical applications to detect metastatic cells, we
demonstrated our technique on a cell mixture. Meta-
static and non-metastatic cells were mixed in 1:1 ratio.
The anti-EGFR aptamer-modified substrates were

incubated with the cell mixture and imaged for
30 min. Metastatic cells, tagged with CMFDA, were
confirmed by fluorescence imaging. Figures 5(a), (b)
show the cell images from a mixture, taken with
optical andfluorescencemicroscopes.

Cell images on anti-EGFR aptamer-functionalized
substrates were converted into binary format and dis-
tancematrix data were accumulated. In figure 6(a), the
captured cells from the mixture are plotted with
respect to their Hausdorff and Mahalanobis distances.
We took these two parameters because both are dis-
tances, and their combination gave flexibility and pre-
cision in the analysis. A 2D distance profile is simple,
sensitive and more robust as advantage of one para-
meter balances the disadvantage of the other. For
metastatic cells, figure 3(b) showed the average Haus-
dorff distance of 2.8 a.u. (SD=0.7 a.u.), and
figure 4(b) showed the average Mahalanobis distance
of 0.7 a.u. (SD=0.27 a.u.). Combining these features,
we hypothesized that we can expect metastatic cell
population around and beyond these values. In
figure 6(a), we established regions where we expected
metastatic and non-metastatic cells to be present. We
did find some cells inside the metastatic region. We
overlaid the fluorescent images on the optical images

Figure 4. (a)AverageMahalanobis distance formetastatic andnon-metastatic cells over 30 min; (b) average of totalMahalanobis
distance of both type of cells after 30 min. Two-tailed t-test showed *p-value<0.05.
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to confirm cell types. Figure 6(b) shows results from
the fluorescent (b). These are and in our established
metastatic region all cells were metastatic (inside red
dotted circle). We could thus successfully detect 52%
metastatic cells from the mixture. Two more exper-
imental results are included in the supplementary
material figures S1(a), (b). These are available online at
stacks.iop.org/BPEX/4/025038/mmedia. Cell profile
for Sokal–Sneath coefficient is also included in the
supplementary material figure S2. Using cell profile
for three features: Hausdorff distance, Mahalanobis

distance, and Sokal–Sneath coefficient, cell detection
from cell mixture is summarized in supplementary
material figure S3. The 3D plots with 3 metrics are
shown in supplementary material figure S4. The com-
bination of 3 metrics is more powerful yet complex
than individual metrics. We expect even more com-
plex data from real patient samples. The three metrics
reflect three aspects (cell body rotation, coarse change
of contour, and fine change of contour) of cell shape
change. Sokal–Sneath coefficient considers cell body,
Hausdorff distance calculates precise contour change

Figure 5. (a)Optical and (b)fluorescentmicrographs ofmetastatic and non-metastatic cellmixture at 1:1 ratio.Metastatic cells were
taggedwithCMFDA. Fluorescence imagingwas used to verify the identity of cells. Both images are for the same spot.

Figure 6. (a)Cells frommetastatic andnon-metastatic cellmixture captured on aptamer-modified substrate are plotted according
to their distance profile.Metastatic and non-metastatic cell regions are established based on previous distancemetrics analysis.
(b)Metastatic andnon-metastatic cells are plotted from fluorescent image. The red dotted line is previously establishedmetastatic cell
region containing 52%of themetastatic cells from the cellmixture.
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and Mahalanobis distance measures coarse contour
change. Calculations based on cell body were more
accurate when cells rotated on the surface. But, cell
contour based analysis eliminated the error derived
from cell spreading on the surface. Hausdorff distance
was very sensitive but the problemwas overcalculation
of subtle movements. Mahalanobis distance resolved
the problem of overfitting, but it was a coarse mea-
surement. Only one metric, however powerful on
small dataset, will need supporting metrics to over-
come its shortcomings when applied to larger and real
datasets. Combined together, the three features are
more effective for metastatic cell detection in these
scenarios.

Cell motility on anti-EGFR aptamermodified sub-
strates can be a novel biomarker for detection of meta-
static cells from other cells. Non-metastatic cells
closely resemble metastatic cells in size and shape. In
biopsy samples, where both invasive and benign can-
cer cells are present, it is very important but difficult to
differentiate between these two. Our results suggest
that implementation of shape similarity analysis
method with anti-EGFR aptamer functionalized cap-
ture substrates can bring about exciting new strategies
for detecting metastatic breast cancer cells in a breast
tissue environment. The techniques also eliminate the
inadequacies of single cell analysis that exist in current
clinical imaging systems. Cell staining often impedes
normal cellular function, which can be unfavorable for
cancer cell identification. Our technique is label-free
and extremely selective.

4. Conclusions

Metastatic breast cancer detection at early stages is very
important to reduce mortality and to improve quality
of life. It is vital to detect metastatic cells before they
spread to other organs. We have presented a simple
but elegant way of discriminating between metastatic
and non-metastatic breast cancer cells. Based on their
well-defined characteristics, our shape matching tech-
niques differentiated and detected metastatic cells
from cell mixtures that mimicked composition of
breast cancer tissue. Our work is based on ‘immobili-
zation’ of anti-EGFR aptamers on substrates for
capturing cancer cells [17]. Capture and release of
cancer cells is necessary for further proteomic and
genomic analysis. The captured cells can be later
collected by washing off from the surface for these
studies. It is difficult to maximize isolation of meta-
static cancer cells based on EGFR expression as the
expression is just 10 fold from non-metastatic to
metastatic cells. Our work has introduced a ‘detection
stage’ in between the ‘capture’ and ‘release’ stage to
confirm identification of metastatic cells and max-
imize their collection.

From our current and previous work [17] and
other studies on cell motility due to EGFR binding

[31–33], we confirmed that the cause of the reported
behavior of metastatic cells is high EGFR expression.
We can infer that for other cell lines this should also
hold true. But the sensitivity of the detection will cer-
tainly depend on the absolute expression of EGFR, and
the effectiveness of the calculated metric. We also
expect that themetastatic cancer cells from real patient
samples will show same behavior, as it is based on
EGFR overexpression. This capture procedure and
morphological feature calculation can be used as a
simple platform to develop a cost-effective and
efficient point of care device to detect metastatic breast
cancer at early stages.
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Figure S1.  (a) Metastatic and non-metastatic cells mixed in the ratio of 1:6.  One out of 
5 metastatic cells could be detected (in red dotted circle) (b)	Mixture of metastatic and 

non-metastatic cells mixed in the ratio of 1:10.  Two out of 4 metastatic cells are 
detected (in red dotted boundary).   



 

Figure S2.  Average Sokal-Sneath coefficient for metastatic and non-metastatic cells 
after 30 minutes (*p-value < 0.05). 

  



 

Figure S3. Metastatic and non-metastatic area establishment from (a) Hausdorff 
distance and Mahalanobis distance profiles, (b) Sokal-Sneath coefficient and 

Mahalanobis distance profile, (c) Hausdorff distance and Sokal-Sneath coefficient 
profile; Cells from metastatic and non-metastatic cell mixture captured on aptamer 

modified substrate are plotted according to their (d) Hausdorff distance and 
Mahalanobis distance profiles, (e) Sokal-Sneath coefficient and Mahalanobis distance 

profile, and (f) Hausdorff distance and Sokal-Sneath coefficient profile. 

 

  



 

Figure S4. Three features (Hausdorff distance, Mahalanobis distance and Sokal-Sneath 
coefficient) are combined in a 3D plot. (a) Profile for metastatic and non-metastatic cells 

observed separately. (b) Metastatic and non-metastatic cells from cell mixture. 
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